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ABSTRACT: Aggregated polymer fillers, such as carbon black and silica, at
concentrations above the percolation threshold form an emergent structure,
the hierarchical filler network, in immiscible systems where dispersion is
driven by accumulated strain. It is proposed that the hierarchical filler network
is composed of a primary nanoscale network that locally percolates at ∼5 vol
% of aggregates, associated with changes in the dynamic spectrum at low
strain, and a secondary micrometer-scale network that globally percolates at
∼20 vol % associated with the Payne effect and electrical conductivity. A
model is proposed with an elastomer dominated dynamic response described
by Einstein−Smallwood behavior at high frequencies and small sizes and a
filler network dominated response at low frequencies and large sizes. The nanoscale mesh size correlates with this transition in
low strain dynamic response. The micrometer-scale network displays a gel-like dynamic response at very low frequencies and a
corresponding gel-like structural scaling regime at large sizes. The hierarchical filler network is described by two crossover
frequencies and associated relaxation times, τ* and τcc, and two related structural scaling regimes.

■ INTRODUCTION

Elastomers such as polybutadiene, polydimethylsiloxane, and
polyisoprene are generally reinforced with nanofillers such as
carbon black and silica to enhance their static and dynamic
mechanical properties. These commercial nanocomposites are
immiscible, and dispersion is driven by the accumulated strain
applied in processing. For this reason, we expect a competition
between local clustering driven by thermodynamics and
dispersion driven by an external processing operation. It will
be shown that this can lead to a two-level hierarchical network
structure with nanoscale percolated clusters and a micrometer-
scale superstructure network. Similar nanoscale clustering can
occur in some model systems.1,2 In commercial products such
as tires, specific properties such as traction, wear resistance,
and rolling resistance are impacted by the hierarchical network.
These properties depend on the filler morphology, the filler−
elastomer surface chemistry, and the degree of filler dispersion.
Studies on the structure and dynamic behavior have
documented the tendency of well-dispersed carbon black
aggregates in an elastomer to form a continuous network held
together by weak van der Waals forces.3,4 Dynamic mechanical
studies with varying strain amplitude have also supported the
presence of a filler network in an elastomer matrix.5−8

The addition of nanofillers to an elastomer matrix increases
the shear modulus and tear resistance.9 The Einstein−
Smallwood equation,10 written in analogy to the Einstein

equation for the viscosity of colloidal suspensions, predicts a
linear dependence of modulus on volume fraction due to
volumetric displacement of elastomer by rigid filler. Modulus
enhancement under semidilute conditions has been general-
ized by Guth−Gold’s virial expansion of the Einstein
equation.11 The bound rubber phenomenon which relates to
rubber occlusion has also been associated with modulus
enhancement.12−14 Medalia postulated that the amount of
occluded rubber would increase the apparent filler volume
fraction,15 although only 50% of the occluded volume
deformed under the application of a load at low strains.12

These propositions account for strain amplification, filler
interactions, and the effective rubber occlusion, but they omit
the impact of a percolated filler network on modulus. Huber
and Vilgis predict that the linear dependence of modulus on
filler volume fraction under dilute conditions changes to a
power-law dependence under semidilute conditions for fractal
aggregates.16,17

Filler networking, due to increase in the local aggregate
concentration, can alter the rheology as well as the dynamic
stress−strain behavior.18 Confinement of polymer chains due
to the size of the network specified by the interaggregate

Received: July 14, 2018
Revised: September 16, 2018
Published: October 1, 2018

Article

pubs.acs.org/MacromoleculesCite This: Macromolecules 2018, 51, 7893−7904

© 2018 American Chemical Society 7893 DOI: 10.1021/acs.macromol.8b01510
Macromolecules 2018, 51, 7893−7904

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
C

IN
C

IN
N

A
T

I 
on

 O
ct

ob
er

 2
6,

 2
01

8 
at

 0
0:

01
:4

6 
(U

T
C

).
 

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.
 

pubs.acs.org/Macromolecules
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.macromol.8b01510
http://dx.doi.org/10.1021/acs.macromol.8b01510


distance was shown to affect the kinetics of chain diffusion.19

Considering the structural hierarchy in reinforcing fillers,
which will be discussed in the following sections, the mesh size,
ξ, can be defined as the average center-of-mass separation
distance between overlapping structures. Early attempts to
ascertain the interaggregate distance equated the fractal
aggregates to spherical particles packed in a cubic lattice.20,21

These models were further modified to account for aggregate
packing based on the atomic packing factor, APF, for
spheres.22 The interaggregate distance, δaa, was generalized by

δ
ϕ
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where ϕf is the filler volume fraction or the effective volume
fraction (ϕeff) due to rubber occlusion and dagg is the aggregate
size considered to be the radius of gyration by Zhang et al.23

based on Wu’s model24 or the aggregate end-to-end distance
by Wang et al.25 Staniewicz et al.26 considered filler anisotropy
following Ambrosetti et al.27 and showed the following
dependence of interparticle distance on filler volume fraction:

δ
ϕ ϕ

=
+
A

(1 8 )f f
aa

(2)

where A is an empirical parameter related to the aspect ratio of
the aggregates viewed as prolate spheroids.
The proposed models for determining the interaggregate

distance, eqs 1 and 2, seem viable but rely on geometric
assumptions. A direct confirmation of these estimated
distances remains elusive. Emerging techniques such as X-ray
tomography and confocal laser-scanning microscopy have been
employed recently to visualize the 3D filler networks.2,28,29 The
network observed by these methods is on the micrometer
scale, identifying it with agglomerates discussed below. On the
nanoscale, a hierarchically associated network based on
percolation of nanoaggregates is proposed here. This network
arises from a competition between clustering due to
thermodynamic immiscibility and dispersion related to the
accumulated strain. Percolation of the nanoscale network
within clusters occurs at ∼5 vol % while the hierarchically
associated micrometer-scale network percolates at ∼20 vol %
as observed by conductivity measurements, for example. The

two networks have distinct signatures in small-angle X-ray
scattering and in dynamic mechanical measurements as
discussed below.
Ultrasmall-angle X-ray scattering (USAXS) can be used to

ascertain the local filler mesh size.30,31 Scattering curves for the
filled elastomers, fit using the unified scattering function,32−34

have shown that the filler aggregate is composed of different
hierarchical structural levels.35−37 The unified function is used
to describe these structural levels:
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and “i” is an index for the hierarchical structural level. Gi and Bi
are contrast factors, Rg,i is the radius of gyration, q is the
scattering or reciprocal space vector, Pi is the power-law scaling
for each structural level, and k has a value of 1 for 3d structures
and is approximately equal to 1.06 for fractal structures. The
scattering vector is inversely related to the size scale under
observation. Consequently, the smallest structural level, level 0,
is observed at high q and pertains to graphitic layers on the
carbon black primary particle which display a power-law slope
of P0 = −2, reflecting df = 2 for graphitic sheets. In the
intermediate q range, level 1 corresponds to the primary
particles, which form mass-fractal aggregates corresponding to
level 2. At low q, a loosely bound agglomerated superstructure
is observed, corresponding to hierarchical level 3.30,38 The size
of this agglomerated superstructure cannot be determined
from USAXS due to a large-scale resolution limit of ∼1 μm.
Scattering from a homogeneous phase arises from

concentration fluctuations. Thermally driven fluctuations are
dampened by the osmotic compressibility, dΠ/dϕf. The first
derivative of osmotic pressure, in the virial expansion, is
proportional to the second virial coefficient, A2. The scattered
intensity from a uniform phase is proportional to kBT/(dΠ/
dϕf) ∼ kBT/A2. For nonequilibrium systems such as elastomer-
filled nanocomposites, an analogy can be made between

Figure 1. Reduced scattering from (a) dilute conditions showing fully resolved filler aggregate structure; (b) semi-dilute overlapping filler structures
at decreasing mesh sizes driven by increasing concentration. The horizontal line reflects the screening term in eq 4. At sizes larger than the
intersection of the horizontal line and reduced scattering curve, the structure appears uniform and cannot be resolved. This size scale is a measure
of the local filler mesh size.
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thermally dispersed particles in a colloidal system and
mechanically dispersed particles. For the case of mechanically
dispersed particles we consider that the accumulated strain
behaves similarly to temperature in a thermally dispersed
colloidal system. In this case we consider a pseudo-second-
order virial coefficient. The homogeneity of phases depends on
the size scale of observation and the concentration. At large
size scales, low q, screening is likely since a uniform phase is
observed. At smaller scales, higher q, the structure can be
resolved, and the phases are no longer uniform. This is similar
to a cloth that is made of fibers. At high magnification the
individual fibers can be seen, but at large scales a uniform
fabric is observed. The random phase approximation39,40

accounts for this dependence on concentration and size scale:
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The first term in eq 4, I(q,ϕf,0)/ϕf,0, reflects scattering from
dilute aggregates in the absence of structural screening. The
second term, νϕf, is a measure of the structural screening at
large sizes. The second term’s contribution to the reduced
inverse intensity, ϕ ϕI q( , )/f f , increases linearly with concen-

tration, dampening the low q reduced intensity. ν is
proportional to the second virial coefficient, A2. In Figure 1,

νϕ1/( )f (horizontal line in the ϕ ϕI q( , )/f f versus q plots), is a

constant for a given concentration, while ϕ ϕI q( , )/f f,0 ,0 is a

monotonically decaying function in q. Under dilute conditions,
νϕf does not contribute to scattering, and structural screening
is absent in Figure 1a. All hierarchical structures discussed
above are resolved under these conditions. However, with
increasing concentration the aggregates are screened out and
cannot be resolved as indicated in Figure 1b. A filler network
emerges at the overlap or percolation concentration, ϕf*,
which can be estimated by equating νϕ*1/( )f to the contrast

factor, G2, of the aggregate.30 The local mesh size, ξ, of the
aggregate filler network can be computed from the reciprocal
space vector, ξ = 2π/q, corresponding to the point where the
horizontal line intersects the dilute curve. For practical loading
levels, the mesh size, representing the pore size of the primary
nanoscale network, is expected to scale between the size of the
agglomerated superstructure (much greater than the aggregate
size) and the primary particle size. This local mesh size can be
computed by equating the unified scattering function truncated
to structural level 2 to νϕ1/( )f when q satisfies
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Rather than large extension irreversibility, the local,
nanoscale percolation concentration indicates the point
where small-amplitude mechanical properties become domi-
nated by the local filler network. It is expected that the local
mesh size determined by SAXS will correlate with a transition
in the small-amplitude dynamic properties where a positive
deviation from the unfilled elastomer spectrum is observed due
to domination of the modulus by the filler network at low

frequencies as described below. For higher frequencies,
associated with smaller sizes, it is expected that the frequency
dependence of the elastomer dynamic response will be similar
to the unfilled elastomer because the response is associated
with filler network pores containing only elastomer. The
dynamic modulus in this high frequency regime is expected to
follow the Einstein−Smallwood equation10 or modifications
proposed by Guth11 and Medalia12 because at sizes smaller
than the mesh size the nanocomposite is well represented by
the displacement of elastomer volume by unyielding filler
leading to a linear dependence of modulus on filler volume
fraction. The Einstein−Smallwood equation involves a shift of
the modulus to larger values retaining the same frequency
dependence. Because the dynamic response is complex, the
choice of storage (elastic) or loss (viscous) modulus depends
on the response of the neat elastomer in the experimental
frequency range. At frequencies lower than that associated with
the filler mesh size the modulus might follow a frequency-
independent spring constant associated with the athermal
response of the Hookean filler network.41 The filler mesh size
determines the rigidity of the filler network, with smaller mesh
sizes being associated with higher modulus. The transition
frequency will increase to higher frequencies as the mesh size
decreases with concentration in the semidilute regime.
It is proposed that a filled elastomer presents two

hierarchically related filler networks: a micrometer-scale
network of filler agglomerates composed of a nanoscale
network of filler nanoaggregates. The nanoscale network
involves percolation of the filler nanoaggregates as the
concentration increases from the dilute (ϕf < ϕf*) to the
semidilute regime (ϕf* ≤ ϕf < ϕf

cc) as shown in Figure 2.
Below ϕf* the increase in dynamic modulus is associated with
the hydrodynamic effect over the entire frequency range.42

Above ϕf*, in addition to the hydrodynamic effect, the
nanoscale network influences the dynamic response at low
strains by presenting a network mesh size below which in size
(associated with high frequency) the system displays elastomer
behavior and above which in size (associated with low
frequency) the athermal and frequency-independent response
of the filler network can have a profound influence. Percolation
of the local network at ϕf* occurs well below global
percolation due to association of nanoaggregates at relatively
low concentrations related to their immiscibility in commercial
systems. In fact, this local network has been observed at about
3 vol % for colloidal silica.43 The mesh size is on the order of
the nanoaggregate size at ϕf* and reduces in size with
increasing concentration. The percolated aggregates on a
nanoscale agglomerate into structures that further percolate on
a micrometer scale at a much larger volume fraction (ϕf ≥ ϕf

cc)
on the order of 20 vol % depending on the filler type, specific
surface area and processing conditions.44,45 This percolation
limit can also be theoretically estimated from the DBP
absorption number using the Janzen equation46 although
only carbon blacks with lower DBP agree experimentally.47

Agglomerates are still in the dilute regime when nanoscale
aggregates are in the semidilute regime, meaning that
agglomerates are not subject to structural screening in
scattering until about 20 vol %.
The micrometer-scale global structure could show agglom-

erated network like response characterized by a mass fractal
power law at very low q in scattering. Gel-like behavior
characterized by G′(ω) ∼ G″(ω) ∼ ωn at low frequency would
correspond to a micrometer-scale percolating network.48 It is
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proposed that the onset of this behavior is linked to the
micrometer-scale network which has been imaged with X-ray
tomography and optical techniques.28,29,49 The large-scale
network influences large-strain behavior, the Payne effect,50

electrical conductivity, and possibly the static mechanical
response as mentioned above, while the nanoscale network, of
which the micrometer-scale network is hierarchically com-
posed, has special significance to the intermediate-frequency
dynamic response as described below and perhaps tear
strength.9

This network hierarchy can be visualized by a tablecloth
model. If one looks at the arrangement of tables covered with
tablecloths in a restaurant from the point of view of the ceiling,
the arrangement of tables constitute a micrometer network.
The arrangement of tables can be dilute when the tables do not
touch (low concentration) and semidilute otherwise (high
concentration). This network is invisible to an observer at the
table. On the contrary, this observer can only see the table
cloth with fixed fiber density on the weave which corresponds
to the nanoscale aggregate network. In fact, there is a fixed
maximum semidilute concentration for the aggregate networks
since they are bonded and cannot pack denser than a certain
concentration. After that the micrometer-scale network has to
cluster to compensate the addition of more material.
In this study, an attempt is made to relate the dynamic

response in the plateau and terminal flow regions at very low
strain amplitudes in the linear viscoelastic regime to the
hierarchical network features from static X-ray scattering
studies. The nanoscale mesh size from scattering as proposed
above is related to a characteristic transition frequency at

which the dynamic modulus scaling differs between filled and
unfilled elastomers after correction for the hydrodynamic
contribution. The idea stems from a basic frequency−length
relationship, such that high frequency probes smaller length
scales. Frequency and length are related by the spectral
dimension which can be associated with the network
connectivity.51 The static aggregate connectivity dimension
has been described as an intrinsic measure of the aggregate
structure with a value of 1 for linear aggregates and >1 for
branched aggregates.52 For homogeneous percolation clusters,
the spectral dimension is predicted to be 4/3.53 The structural
features of the large-micrometer scale network as observed in
scattering are correlated to the gel-like response observed in
the low/static frequency region. Although the dynamic
response of neat polymer chains is well established, a
hierarchical filler network and its structural emergence in the
dynamic response of nanocomposites have not been proposed.
In this paper, the observed dynamic behavior is experimentally
linked in the low frequency region to the emergence of the
hierarchical filler network.

■ EXPERIMENTAL SECTION
Commercially available polybutadiene rubber, B550, with a Mooney
viscosity (ML 1 + 4 at 100 °C) of 54 and density of 0.9 g/cm3 was
used in this study. The elastomer contained 38% cis-1,4-butadiene and
11% vinyl as determined via FTIR spectroscopy on a Digilab FTS
3000 Excalibur series spectrometer. Gel permeation chromatography
was used to determine the polydispersity, Mw/Mn = 1.3 ± 0.06, and
weight-average molecular weight, Mw = 220 ± 7 kg/mol. The carbon
black filler used for the study was commercially available VULCAN 8,
which conforms to ASTM N110 target values provided by Cabot
Corporation. The carbon black had a statistical thickness method
(STSA) surface area of 123 m2/g, a density of 1.9 g/cm3, and an oil
absorption number after crushing (COAN) of 0.97 mL/g.54 For
elastomer-filler compounding, 6PPD (N-(1,3-dimethylbutyl)-N′-
phenyl-1,4-phenylenediamine), an antioxidant and antiozonant for
natural and synthetic elastomer compounds, was provided by TCI
America. The composites prepared for this study were not cross-
linked to simplify the viscoelastic response.

Mastication of the carbon black and elastomer was accomplished in
a 50 g Brabender mixer at 130 °C and a rotor speed of 60 rpm. The
filled elastomer mix was discharged after 6 min, during which the
torque versus time curve had dropped from a peak value and reached
a plateau. The carbon volume fractions, ϕf, in the prepared samples
were 0, 0.005, 0.027, 0.077, 0.121, and 0.168. For mesh size
measurements, the filled elastomers were pressed into a washer with
thickness of about 1.2 mm and subsequently baked in an oven at 100
°C for 10 min to ensure uniform thickness. Measurements were
performed at the Advanced Photon Source, Argonne National
Laboratory using the ultrasmall-angle X-ray scattering (USAXS)
facility located at the 9 ID beamline, station C. The instrument is
designed and operated by Jan Ilavsky.55 The USAXS data were
corrected for all instrumental backgrounds and were desmeared using
the instrumental software.

For the viscoelastic measurements, disks of about 3 mm thickness
with a diameter of 20 mm were prepared by pressing the samples at
120 °C for 20 min. The viscoelastic measurements were performed on
a Discovery HR-2 rheometer by TA Instruments equipped with a
parallel plate geometry. A constant strain amplitude of 0.1% was used.
At such small extensions molecular conformations are only slightly
perturbed from equilibrium. Macroscopically, the response reflects the
dynamics at equilibrium. The viscoelastic moduli at all filler
concentrations are independent of strain amplitude, and consequently
all the data are collected in the linear viscoelastic regime. Isothermal
frequency sweeps were performed as a function of temperature
between 25 and 150 °C and were time−temperature superposed to

Figure 2. Sketch of structural hierarchies under dilute (ϕf < ϕf*),
nanoscale semidilute (ϕf* ≤ ϕf < ϕf

cc), and micrometer-scale
semidilute (ϕf ≥ ϕf

cc) conditions and under distinct size/frequency
scales of observation. The local percolation is associated with a
nanoscale network whereas global percolation is associated with a
micrometer-scale network.
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obtain a master curve at a reference temperature of 25 °C. All
experiments were performed under nitrogen.
Specimens for TEM imaging were prepared by slicing thin sections

of ∼80 nm below the glass transition temperature of the nano-
composites using a cryo-ultramicrotome. Micrographs of these thin
sections collected on 200-mesh carbon-coated copper support grids
were obtained through a transmission electron microscope operating
in STEM mode with an accelerating voltage of 25 kV and an emission
current of 10 μA.

■ RESULTS AND DISCUSSION
Small-Angle X-ray Scattering. Figure 3 shows the

volume fraction reduced scattering curve for the dilute (ϕf =

0.005) filler concentration. The unfilled elastomer background
was subtracted to reveal the scattering from carbon black
particles alone. This volume fraction normalized intensity
curve was fit using a two-level unified fit in the intermediate q
range. An upturn at low q indicates the presence of
agglomerates. As discussed previously, the size of the
agglomerate (level 3) cannot be ascertained from USAXS.
However, a surface fractal scaling of about −3.1 (P3) is
observed, which indicates that the micrometer-scale agglom-
erates are solid objects with rough surfaces composed of
nanoscale mass fractal aggregates.30 The fit parameters from eq
3 are indicated in Table 1. In the high q region, 0.015−0.03
Å−1, a power-law slope of −4 (P1) indicates smooth sharp
interfaces to 3d particles, and this assumption seems valid for
the primary particle in this region. (At higher q, q > 0.03 Å−1, a
power law of −2 slope indicates two-dimensional graphitic
surface structure, which is not fit.) The corresponding radius of
gyration of the primary particle (level 1) is about 30 nm. The
intermediate q range, 0.0015−0.015 Å−1, is characterized by a
mass fractal slope of −2.3 (P2). This slope is the negative of
the mass fractal dimension, df, of the aggregate (level 2), which
is composed of aggregated primary particles. This fractal

dimension agrees with the empirical value determined by
Medalia.15

The aggregate size, Rg,2, is 157 ± 30 nm, and the aggregate
end-to-end distance, = =R d d z d

eted agg p
1/ f , is about 108 nm.

The average feature size in the TEM micrograph in Figure 4 is

about 120 nm or a tenth of the scale bar and agrees with the
aggregate end-to-end distance, Reted, from scattering. Note that
the small spherical entities are not primary particles but
aggregates that are out of the image plane.
The Unified fit parameters were used to generate the average

fractal aggregates shown in the inset images (a) and (d) in
Figure 4 using the method of Mulderig et al.56 It can be seen
that these average aggregates from scattering agree with the
features observed from the TEM micrograph as shown in the
inset images (b) and (c) in Figure 4 (Mulderig’s code is given
as supplemental material in ref 56).

Determination of Local Emergent Network Size from
Structural Screening and TEM Micrograph. As discussed
above, eq 4, increasing filler concentration leads to a loss in the
concentration-reduced intensity at low q associated with
screening of structures larger than the filler mesh size. Figure

Figure 3. Scattering curve for the dilute filler (ϕf = 0.005) is shown
with the structural parameters from the unified fit given in Table 1.
Solid lines indicate the power-law regimes for the four structural
levels. The dotted lines distinguish the low, intermediate, and high q
regions.

Table 1. Structural Parameters from the Unified Fit (Eq 3)
and the Computed Sauter Mean Diameter (dp), Degree of
Aggregation (z), Aggregate Tortuosity (dmin), and
Connective Dimension (c)30,56

structural parameter primary particle (level 1) aggregate (level 2)

G (cm−1) 2.3 (± 0.2) × 105 6 (± 1) × 106

Rg (nm) 29 ± 1 157 ± 30
B (cm−1 Å−1) 48 (± 1) × 10−5 0.7 ± 0.6
P 4 2.3 ± 0.1
dp = 6(V/S) (nm) 26 ± 0.2
z = (G2/G1) + 1 27 ± 5
dmin 1.96 ± 0.05
c = df/dmin 1.17 ± 0.06

Figure 4. TEM micrograph for the dilute filler (ϕf = 0.005) with an
average feature size (encircled) associated with the filler aggregate of
120 nm or about a tenth of the scale bar. The size is about the same as
the aggregate size determined from USAXS in Figure 3; inset images
(a) and (d) are simulated average aggregates obtained from the
scattering fit parameters using the Mulderig et al. method.56 These
aggregates are similar to the aggregates in the inset images (b) and
(c), respectively.
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5 shows the effect of structural screening with concentration
on the reduced scattering curves, I/ϕf versus q, for the

semidilute samples in the intermediate q range. The
normalized intensity curve, indicated by the red line,
corresponds to a dilute concentration of filler (ϕf = 0.005),
whereas the black and blue lines represent semidilute
concentrations ϕf* ≤ ϕf = 0.027 < ϕf

cc and ϕf = 0.168 ≥
ϕf

cc, respectively. Both semidilute curves overlap the dilute
curve in the high q region corresponding to level 1. Thus, for
all of the concentrations considered, there is no screening of
the primary particle. However, in the intermediate q range a
reduction in normalized intensity is observed as discussed in
Figure 1. The decrease in reduced intensity at intermediate q
with increasing filler loading suggests that the aggregates
overlap (for the black curve the agglomerate level is not
screened since the samples are below ϕcc). Using eq 4, we can
describe the screening effect at each concentration by the
intercept, indicated by the horizontal line in Figure 5. The
screening constant, ν, for this polymer−filler combination was
obtained from the slope of the least-square fit to νϕf vs ϕf. This
was found to be ν = 13 (± 3) × 10−6 cm.
The micrometer-scale structure also changes with increasing

filler concentration. At lowest q the agglomerate structure
transitions from a dispersed solid, surface fractal structures (P3
= 3.1), to a mass fractal micrometer-scale network with a weak
power-law decay on the order of −2.2 at ϕf = 0.168 (blue
curve), indicating a mass fractal dimension, df, of 2.2. A similar
fractal slope has been observed by Koga et al.57 for a carbon
black volume fraction of 0.2 in both styrene−butadiene rubber
(SBR) and polyisoprene (PI) elastomer. Although this
structural feature was associated with a mass fractal
agglomerate rather than a large-scale agglomerate network
proposed here, the size was predicted to be on the order of 10
μm.57 A similar fractal dimension with feature size of ∼20 μm

has been observed for titania nanoparticles after fluidization by
spin-echo small-angle neutron scattering.58 Baeza et al. have
also reported a fractal scaling of −2.4 in the low q region
corresponding to the association of aggregates into larger-scale
structures.38

The local mesh size, ξ, for each filler volume fraction is listed
in Table 2 as determined from the point of intersection of the

dashed horizontal line to the dilute filler curve in Figure 5. The
mesh size decreases with increasing filler content. The mesh
size approximately equals the average distance between
overlapping structures from the TEM micrographs in Figure
6. Figure 6a reveals an average separation of about 300 nm or
half the scale bar at ϕf = 0.077 and about 180 nm or three-
tenths of the scale bar at ϕf = 0.168 in Figure 6b, which agrees
with the size determined from scattering on a much larger
sampling volume.
Figure 7 compares the local mesh size, ξ (left axis), proposed

in this study, eq 5, with the geometrical models used to
determine the interaggregate distance between aggregates as a
function of filler volume fraction. In particular, the local
network emergence is shown along with the mesh size based
on the geometric interaggregate spacing models by Zhang et
al.,23 Wang et al.25 (eq 1) and by Staniewicz et al.26 (eq 2).
The mesh size is related to the interaggregate distance by ξ =
δaa + dagg. Here, dagg = Rg,2 for the models proposed by Zhang
et al.23 and Staniewicz et al.,26 whereas the aggregate end-to-
end distance (Reted) determined from scattering was consid-
ered as the representative aggregate diameter in the model
proposed by Wang et al.25 In the model proposed by Wang et
al.25 the effective volume fraction, ϕeff, due to rubber occlusion
was considered. ϕeff was computed by Wang et al.25 from the
specific volume of DBP(24M4). For Vulcan 8, used here, this
value is 0.97 mL/g from the product specifications.54 Random
packing of aggregate equivalent spheres was assumed such that
APF = 0.63 in eq 1.
It can be seen in Figure 7 that the mesh size based on the

cubic lattice model proposed by Zhang et al.23 scales like the
mesh size from scattering only above 10 vol % filler loading.
Zhang’s choice of the radius of gyration as the representative
aggregate diameter more closely approximates the mesh size
determined from scattering as opposed to the aggregate end-
to-end distance of Wang. The mesh size based on the prolate
spheroid model27 of Staniewicz et al.26 agrees well with the
local mesh size based on the unified function over the entire
concentration range shown in Figure 7. An anisotropy
parameter, A = 15 ± 2, was used in eq 2 which well
approximates the measured values. This deviates considerably
from the empirical value of 3 for attractive particles given by
Staniewicz et al.26 The measured mesh size based on scattering
as confirmed by TEM micrographs is a more realistic measure

Figure 5. Reduced scattering curves for the dilute and semidilute filler
concentrations indicating structural screening. Horizontal lines
indicating the intercept in eq 4. The reduced scattered intensity,
I(q,ϕf)/ϕf, is plotted versus the scattering vector, q, on a log−log
scale.

Table 2. Local Filler Network Mesh Size from Small-Angle
X-ray Scattering and TEM Micrographs of Nanocomposites
with Varying Filler Content

mesh size, ξ (nm)

ϕf USAXS TEM

0.027 590 ± 70
0.077 280 ± 30 320 ± 100
0.121 220 ± 20 207 ± 51
0.168 190 ± 10 176 ± 30
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of the particle spacing compared to the geometric approx-
imations.
Determination of Relaxation Time Related to the

Local Network from the Dynamic Spectra. Time−
temperature superposed master curves at a reference temper-
ature of 25 °C for neat and filled nanocomposites with ϕf =
0.027 and ϕf = 0.168 (refer to the Supporting Information,
Appendix A, Figures S2−S4) were constructed by both
horizontal and vertical shift factors (refer to the Supporting
Information, Appendix B, Figure S6). The dynamic moduli for
the neat polymer in Figure S2 deviate from the G′(ω) ∼ ω2

and G″(ω) ∼ ω for a viscous liquid at frequencies below the
G′(ω)−G″(ω) crossover. This can be attributed to poly-
dispersity.59

The dynamic viscoelasticity of nanocomposites above
percolation arises due to the combined response of the filler
network and the polymer matrix. The contribution of the filler
network and polymer to the dynamic response can be elastic or
viscous,60 although this largely depends on the frequency. In
spite of the fact that the complex moduli of the nanocomposite
can be fit using these contributions from the two-phase
model,61,62 the frequency of the transition to network

dominated behavior has not been reported. Determination of
this transition frequency can be achieved by scaling the storage
modulus by the hydrodynamic reinforcing factor, H(ϕf) =
G′(ϕf)/G′(ϕf = 0). Although the nanocomposite response is

Figure 6. TEM micrographs for nanocomposites (a) ϕf = 0.077 with
an average separation distance between the features ∼300 nm or half
the scale bar; and (b) ϕf = 0.168 with an average separation distance
between the features ∼180 nm or three-tenths the scale bar. The
reduction in mesh size is associated with overlap of more structures at
higher concentration. For the TEM micrograph at ϕf = 0.121 refer to
Figure S1.

Figure 7. Plot of mesh size, ξ (left axis), versus filler volume fraction,
ϕf. The red circles show the predicted scaling of mesh size with the
unified function; the mesh size based on the interaggregate model
proposed by Zhang et al.23 is shown as the green curve, by Staniewicz
et al.26 is shown as the black curve, and by Wang et al.25 is shown as
the gray curve. The vertical line indicates the local percolation
concentration, ϕf*, such that ϕf* = 1/G2ν ∼ 1.5%.

Figure 8. A log−log plot of the storage modulus scaled by H(ϕf)
versus frequency comparing filled (ϕf = 0.168) and unfilled elastomer.
For other filler concentrations refer to Figures S8−S10. The scaling in
the high frequency plateau region, n2, was constant at 0.16 for all the
curves. The fit parameters for both frequency regions are listed in
Table 3.
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complex, scaling G′(ω) with H(ϕf) is a good approximation
s ince the magni tude of the complex modulus

ω ω| *| = ′ + ′′G G G( ( ) ( ) )2 2 1/2 would be similar to G′(ω).
Also, in the high frequency region, the response is
predominantly elastic since G′(ω) > G″(ω) as shown in the
Supporting Information (Appendix A, Figure S2).
The hydrodynamic reinforcement factors at different filler

concentrations are shown in the Supporting Information
(Appendix C, Figure S7). The point where the filled elastomer
curve (G′mix) deviates from the scaled unfilled elastomer
(H(ϕf)G′0) curve reflects the relaxation time associated with
the local filler network impacting the dynamic response
beyond the Einstein−Smallwood/Guth−Gold displacement.
This “mesh frequency” can be quantified by scaling the neat
polymer curve by H(ϕf) as discussed above and approximating
the curve with two power-law regimes above and below the
transition, as shown in Figure 8 for ϕf = 0.168. In the high
frequency region, the reduced modulus curve and power-law fit
do not change with filler loading. This transition frequency
corresponds to the point where the two power-laws cross. Each
filler loading has a unique crossing point. The characteristic
transition frequency increases with increased filler content
correlating with smaller size scales and shorter relaxation times,
τ* = 1/ω*. The fit parameters and relaxation times for both
power laws are listed in Table 3 for each of the filler
concentrations. The transition frequencies could also be
determined from the linear Cole−Cole plot based on the
deviation from Debye behavior, i.e., the point where a
semicircle drawn to the modulus/frequency curve deviates.
The master curves in Figure S2 and S3 indicate the dynamic

behavior of filled elastomers at a reference temperature of 25
°C. However, a road tire would also be subjected to
temperatures above ambient conditions. The transition time
associated with the local filler network can be predicted at
higher temperatures by shifting τ* at the reference temperature

(25 °C) with the horizontal shift factor for the elevated
temperature, τ*shifted = τ*refaT. The horizontal shift factor
aT

50 °C is about 0.35 whereas aT
75 °C is about 0.15 (refer to

Appendix B, Figure S6, in the Supporting Information). The
predicted transition times are listed in Table 4 and agree with
τ* computed from master curves at higher reference
temperatures following the approach shown in Figure 8.
Determination of Relaxation Time Related to Global

Network from the Dynamic Spectra. At low frequencies,
the absence of the G′(ω)−G″(ω) crossover coupled with a
weaker frequency dependence with increasing filler concen-
tration (refer to Figures S3 and S4) indicates a liquid to solid-
like transition as filler concentration increases.63,64 Ivaneiko et
al. have also modeled the dynamic response of reinforced
elastomers by considering this weak frequency depend-
ence.65,66 For ϕf = 0.027 (Figure S3), the G′(ω)−G″(ω)

overlap in the low frequency region indicates a weak gel. The
rigidity of the gelled network increases at ϕf = 0.168. This gel-
like behavior can also extend over the entire frequency region
at higher nanofiller concentrations.67 The appearance of tan δ
peaks (refer to Appendix A, Figure S5) with increasing filler
concentrations also indicates gel-like behavior (see Figure 5 in
ref. 68).
The gel-like behavior above percolation concentrations at

lower frequency is associated with the globally percolating
micrometer-scale network. Traditionally, the volume fraction
at which the filler particles overlap is estimated as ϕcc = z(dp/
Reted)

3 = α(dp/Reted)
3−df, where α is on the order of 1, which

agrees with the aggregate overlap condition proposed by
Huber and Vilgis.16 ϕcc is estimated to be 0.37 based on the
parameters obtained from scattering in Table 1. This value is
on the same order of magnitude as the global percolation
determined from electrical conductivity measurements.44

Because the milled composite is not at equilibrium and the
nanoparticles would cluster and separate if equilibrium could
be reached, we expect significant local clustering of the
nanoparticles even at low concentrations so that the overlap
concentration as normally calculated is not an appropriate
measure of the point in concentration where significant local
particle−particle interactions occur under a given processing
history as quantified by the accumulated strain.
The onset of gelation associated with this micrometer scale

network can be estimated from Cole−Cole plot of G″(ω)
versus G′(ω) on a log scale. Following Winter and Mours,69 a
linear regime at low G″(ω) and G′(ω) is expected. This would
correspond to a slope of 1, to the left of Figure 9. Thus, the
point of deviation from a scaling of 1 indicates the frequency
associated with the global network mesh size. This has been
approximated by evaluating the derivative of the second-order
polynomial fit to the logarithmic G″(ω) versus G′(ω) curves.
Using the transition values from the Cole−Cole plot and
locating this point on the G′(ω), G″(ω) versus frequency plots
(Supporting Information, Appendix A, Figures S3 and S4)
offer a method to determine the onset of the large-scale filler
network’s dynamic response.
Figure 10 shows the dependence of the local, nanoscale

mesh-transition time, τ* = 1/ω*, on the mesh size, ξ, from X-
ray sca t te r ing . Fo l lowing Vi lg i s and Winter , 5 1

ξ τ τ∼ * ∼ *α( ) ( )d1/ s where ds is the spectral dimension of
the local filler network. α is 0.8 ± 0.1, which corresponds to a
spectral dimension, ds of 1.25 ± 0.16 from Figure 10. The
spectral dimension describing local network dynamics is
approximately equal to the static aggregate connectivity
dimension, c = df/dmin within experimental error as listed in
Table 1. This supports the proposition that the filler mesh size
links the static structure and the dynamic response. Structural
screening observed in scattering associated with local filler
percolation can explain the network impact observed in

Table 3. Power Law Fit Parameters for Dynamic Response
of the Filled Elastomers

low ω fit parameters high ω fit parameters

ϕf b1 × 105 n1 b2 × 105 n2 τ* (s)

0.027 4.5 ± 0.1 0.53 ± 0.01 2.98 ± 0.02 0.16 3.1 ± 0.2
0.077 3.7 ± 0.4 0.48 ± 0.02 3.12 ± 0.02 0.16 1.7 ± 0.5
0.121 4.9 ± 0.1 0.42 ± 0.01 4.50 ± 0.05 0.16 1.4 ± 0.1
0.168 7.0 ± 0.3 0.34 ± 0.01 6.64 ± 0.03 0.16 1.3 ± 0.3

Table 4. Predicted Transition Times for the Local Filler
Network at Higher Temperatures

predicted transition times based on horizontal shift
factor, aT

ϕf τ* (s) at 50 °C τ* (s) at 75 °C

0.027 1.1 ± 0.08 0.47 ± 0.04
0.077 0.60 ± 0.2 0.26 ± 0.08
0.121 0.49 ± 0.05 0.21 ± 0.02
0.168 0.46 ± 0.1 0.19 ± 0.05
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dynamics at about 3 vol % filler loading. This local nanoscale
network has an associated mesh size, which emerges with
increasing filler content. A decrease in this structural size scale
is observed with increasing concentration due to overlap of
filler aggregates that leads to an increased frequency of
transition and a reduced transition time.

It can be seen that the transition time reduces with
increasing filler content and temperature (Table 4) which is
important in a tire application. Hence, it is reasonable to assert
that at practical loadings the local nanoscale filler network
affects nanocomposite dynamics at time scales of about 0.05 s.
For automotive tires, the frequency, ω*, associated with τ*∼
0.05 s would correspond to vehicle speeds of 60−80 mph.
Thus, the relaxation time of the local filler network impacts the
tire behavior at highway speeds. Additionally, the tear strength
could be impacted by the local nanonetwork. On the contrary,
the relaxation time of the micrometer-scale filler network is on
the order of 10−100 s, thereby associated with the static
response and structural stability of a tire.
Figure 11 shows the relaxation times associated with the

micrometer-scale network gels at increasing filler concentration

(right to left) as a function of the local network relaxation time.
The time scales are related by a power-law of about 2.2 slope,
which is equal to the mass fractal dimension of the
micrometer-scale network determined from scattering for
concentrations above the local percolation threshold (see
Figure 5). This link between these two relaxation times
supports the network hierarchy proposed above. Assuming a
similar functionality between size and frequency for the two
hierarchical levels in the filler network then this fractal
relationship between the two relaxation times results.
τcc ∼ (τ*)2.16 ∼ (ξ)1.73 confirms that the size of the global

gel-like network is about 2 orders of magnitude larger than the
local nanoscale network and on the micrometer-scale as
proposed in this study (see Figure 2).
Figure 12 summarizes the hierarchical network model as it is

supported by the dynamic mechanical, scattering, and
microscopy data. In scattering, at low q, a power-law decay
of −2.2 slope indicates a mass fractal network with df = 2.2 on
the micrometer scale. In this region, on the frequency scale, G′
is proportional to G″ and to ωn, indicating filler gelation or
formation of a percolating network on the macroscale, that is,
across the gap of the rheometer. This network regime
terminates in q at about 0.00042 Å−1 (∼1.5 μm) and in ω at

Figure 9. Cole−Cole plot for various filler loadings showing a slope of
1 associated with the global filler network. The red symbols indicate
the onset of gel-like behavior on reducing frequency, i.e., G′(ω) ∼
G″(ω) ∼ ωn. The frequency corresponding to this onset, ωcc, is
indicated by the dotted line in Figures S3 and S4 for ϕf = 0.027 and ϕf
= 0.168, respectively.

Figure 10. Inverse transition frequency from dynamic rheology versus
mesh size from USAXS. The inverse transition frequency is related to
the mesh size by reciprocal spectral dimension. The arrow indicates
increasing filler concentration.

Figure 11. Variation of gel time, τcc, associated with bulk filler
network with the transition time, τ*, i.e., deviation of nanocomposite
from pure elastomer behavior. This transition time, τ*, relates to the
local filler network.
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τcc ∼ 0.016 Hz. At q ∼ 0.0033 Å−1 (∼180 nm) the nanoscale
mesh size within local clusters is indicated by the intersection
of νϕ1/( )f and the dilute scattering curve (green line). On the

frequency scale at ∼0.75 Hz, τ* is reached where the scaled
neat elastomer curve matches the filled curve and the spectrum
enters Einstein−Smallwood behavior at high frequency. In
terms of these two features the structural scattering and
dynamic response curves are compatible, and these points
serve as a direct link between structure and dynamics,
demonstrating the impact of the emergent hierarchical filler
network on nanocomposite dynamics.

■ CONCLUSION

The dynamic response of filled elastomers is influenced by the
structure of the filler network. It is shown that a proposed
model based on dominance of the response at high frequency
by the elastomer as modified by the Einstein−Smallwood
equation, corresponding to nanoscale sizes, and a filler network
dominated response at lower frequencies, corresponding to
larger sizes. The parameter governing this transition is the
nanoscale filler mesh size that can be determined using X-ray
scattering. A scaling relationship between the dynamic
transition time, τ* = 1/ω*, and the filler mesh size, ξ, is
supported by the results. The results agree in volume fraction
scaling with predictions based on the interaggregate distance
model at loadings beyond 10 vol %.
The emergent filler structure includes two hierarchically

related networks: a nanoscale network formed by percolation
of filler aggregates at about 5 vol % and a micrometer-scale
filler network hierarchically built from the nanoscale network,

which displays a different mass fractal dimension and forms at
about 20 vol % filler. The two networks show distinct features
in the small-angle X-ray scattering pattern. The nanoscale
network is related to the dynamic response at low strain
amplitudes as demonstrated in this paper, while the micro-
meter-scale network is related to electrical conductivity, the
Payne effect, and static structure at large-strain amplitudes.
The existence of a two-level hierarchical network structure is
driven by the immiscibility of the filler/polymer system and is
expected in other immiscible nanocomposites where dispersion
is driven by accumulated strain. We have found that such
hierarchies are not present in compatibilized nanocomposites
such as aqueous organic pigment/surfactant systems until
drying leads to immiscibility.31,70 Predictive simulations of the
development of these hierarchical nanocomposite networks are
a subject of future publications.
Although there are many studies of structure of nanofillers in

polymer matrices, few have directly predicted features of the
dynamic response. It is believed that quantification of the
nanoscale filler mesh size and hierarchical filler network as
described in this paper serves as an important link on which to
build a broader understanding of the connection between
nanostructure and dynamic response in nanocomposites.

■ ASSOCIATED CONTENT

*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.macro-
mol.8b01510.

Figure 12. Graphic summarizing the hierarchical network model as supported by mechanical and structural data. Red circles are for the unfilled
elastomer scaled storage modulus. Filled squares are for ϕf = 0.168 filled sample storage modulus. Open black squares are the loss modulus for the
filled elastomer. The blue line is the scattering curve for the filled sample. Top axis is frequency with dynamic moduli on the right axis; the bottom
axis is the reciprocal space vector with left axis the scattered intensity. Two points link the top and bottom axes, τ* to the right and τcc to the left.
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TEM micrograph at ϕf = 0.121; G′, G″, tan δ master
curves for ϕf = 0, 0.027, and 0168; shift factors for
master curve construction; hydrodynamic reinforcement
factor H(ϕf); storage modulus scaled by H(ϕf) versus
frequency plots to determine τ* at ϕf = 0.027, 0.077, and
0.121 (PDF)
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